Auctions with Frictions

Stephan Lauermann, Bonn University Asher Wolinsky, Northwestern University

> December 2020 Virtual Market Design Seminar

Conventional auction: 1 seller and N buyers with private values $v_1,...,v_N$

Auctions as tool to study price competition in markets for assets (selling a house or a company) or services (procuring a home repair, applying at banks for a loan)

In many such scenarios, however,

- the recruitment and motivation of bidders might be a central issue (N is not exogenously given)
- the commitment ability of the auctioneer may be limited
- the interaction affected by information that auctioneer has or is trying to learn

Main feature

N is endogenous, jointly determined by

- seller's costly recruitment effort (marketing of a sale)
- buyer's costly entry (information acquisition costs, bid preparation costs)

Trade-off More recruitment....

- increases competition and number of high value buyers...
-but if more recruitment is anticipated, harder to motivate buyers to participate given costs

Findings

- Excessive recruitment & cautious bidder entry ("rat race")
- market break-down (unraveling).

Contribution

Combining recruitment and entry costs with limited commitment

Basic Setup: Auction with Bidder Solicitation

- 1. Seller chooses unobservable recruitment effort x; costs xs, with s > 0Number of contacted bidders is Poisson distributed with mean x
- 2. Contacted bidders decide whether to participate at costs c > 0
- 3. Participating bidders learn number of participants n and private value $v \in [0, 1]$ from distribution G
- 4. Participants submit bids, highest bidder wins and pays bid

Payoffs. If winning bid is p,

• Seller: p - xs

• Buyers: v - p - c [winner], -c [losers], 0 [non-participants]

Study symmetric (perfect Bayesian) **equilibrium** bidding strategy β (v, n) \in [0, 1] entry probability $q \in$ [0, 1] recruitment choice $x \ge 0$

Variations: Other auction formats, buyer heterogeneity (prior signals/costs), unobserved participation n, uncertain seller recruitment, adverse selection, fees/subsidies/reserve price, ... **Questions?**

Auction Stage: Bidding Equilibrium

Each participant learns

- total number of participants, n
- own value $v \in [0,1]$, i.i.d. distributed with regular c.d.f. G

Result (Milgrom, 2004, Chapter 4)

First-price auction has unique sym. equilibrium. Denote it β_{FPA} :

- 1. $\beta_{FPA}(v, n) < v$ [bid shading]
- 2. $\beta_{FPA}(v,1) = 0$ [monopsony]
- 3. $\beta_{FPA}(v, n)$ is increasing in n [oligopoly]
- 4. $\beta_{\textit{FPA}}(v, n) \rightarrow v$ as n grows [perfect competition]

Running example: v is uniformly distributed; then,

$$\beta_{FPA}(v,n) = \frac{n-1}{n}v$$

Entry-Stage

Given recruitment effort x and participation probability q: Expected number of (other) participants $xq =: \lambda$; Poisson(λ) distributed

Given λ and β_{FPA} , expected utility from entry is $U(\lambda)$

Observation $U(\lambda)$ is decreasing in λ , with $U(\lambda) \rightarrow 0$ for λ large

Assumption: U(0) > c

Break-even participation level λ_{\max}^{B} solves $U\left(\lambda_{\max}^{B}\right)=c$

Best-Response Entry

$$\begin{split} & \lambda < \lambda_{\max}^{B} & \Rightarrow & q = 1 \\ & \lambda = \lambda_{\max}^{B} & \Rightarrow & q \in [0,1] \\ & \lambda > \lambda_{\max}^{B} & \Rightarrow & q = 0 \end{split}$$

Expected Bidder Utility: Uniform Example

$$U(2) \approx 0.15$$
: For $c = 0.15$, we have $\lambda_{\max}^{B} \approx 2$

 $U(5) \approx$ 0.04: For c= 0.04, we have $\lambda_{\max}^{B} \approx 5$

Recruitment Stage [1/2]

Given β_{FPA} and expected participation λ , seller's expected revenue is $R(\lambda)$

Observation $R(\lambda)$ is increasing, R(0) = 0 and $R(\lambda) \to 1$ for λ large

- 1. Higher chance of high value bidder
- 2. Increasing competition increases expected bids

If seller chooses λ with recruitment effort $x = \frac{\lambda}{q}$, profit is

$$R(\lambda) - \lambda \frac{s}{q}$$

where $\frac{s}{a}$ is effective (equilibrium) cost of a bidder

Optimum: Necessary first-order condition for interior λ ,

$$R'(\lambda) = \frac{s}{q}$$

Caveat: Profit is not concave \Rightarrow corner solution at 0 for high s

Break-Even Costs and Minimal-Scale

If
$$\frac{s}{q} > s_{\max}$$
, optimal participation $\lambda_s = 0$
If $\frac{s}{q} < s_{\max}$, optimal participation $\lambda_s \geq \lambda_{\min}^S > 0$ s.t. $R'(\lambda_s) = \frac{s}{q}$

BLUE: Marginal Revenue $R'(\lambda)$, RED: Average Revenue $\frac{R(\lambda)}{\lambda}$

Break-even costs $s_{\rm max} \approx 0.14$ and minimal scale $\lambda_{\rm min}^{\rm S} \approx 2.6$

Symmetric Equilibrium Definition

Reduced Form Equilibrium $(\lambda^*, \hat{\lambda}^*, q^*, \beta^*)$:

- 1. Recruitment λ^* optimal given $\frac{s}{q^*}$ and β^*
- 2. Beliefs $\hat{\lambda}^*$ correct: If $\lambda^* > 0$, then $\hat{\lambda}^* = \lambda^*$
- 3. Entry decision q^* optimal given belief $\hat{\lambda}^*$ and β^*
- 4. Bidding behavior mutually optimal: $\beta^* = \beta_{FPA}$

If $\lambda^* = 0$ being contacted is "off-the-path":

Belief about recruitment is some $\hat{x} \geq 0$ \Rightarrow Belief about total participation $\hat{\lambda}^* = \hat{x}q^*$

If
$$q^* = 0$$
, then $\hat{\lambda}^* = 0$.

No-Trade Equilibrium: Market Breakdown

Proposition

If $\lambda_{\max}^B < \lambda_{\min}^S$, then there is no trade in any equilibrium for any s [bidders' break-even level is below seller's minimum scale].

Uniform example.

If c=0.15, then $\lambda_{\max}^{B}\approx 2$, while $\lambda_{\min}^{S}\approx 2.6$; hence, no trade for any s.

Idea:

- Seller would like to commit to $\lambda \leq \lambda_{\max}^B$ to induce entry (for small s)
- ...but with λ unobserved, deviates to $\lambda \geq \lambda_{\min}^S$ with $\lambda_{\min}^S > \lambda_{\max}^B$

Insight:

Lack of commitment and costly entry lead to excessive recruitment; precludes trade even if recruitment is cheap.

Equilibrium has buyer beliefs $\hat{\lambda}^* = \lambda_{\max}^B$ and $q^* \in (0,1)$ with $\frac{s}{q^*} \geq s_{\max}$.

Equilibrium with Trade

Proposition: If $\lambda_{\max}^B > \lambda_{\min}^S$, then for $\hat{s} = R'(\lambda_{\max}^B)$, maximal trade is

 $s>s_{\max}$: $\lambda^*=0$

 $\hat{s} < s < s_{ ext{max}}$: $\lambda_{ ext{min}}^{ ext{S}} < \lambda^* < \lambda_{ ext{max}}^{ ext{B}} ext{ with } R'\left(\lambda^*
ight) = s ext{ and } q^* = 1$

 $s<\hat{s} \qquad \qquad : \quad \lambda^*=\lambda_{\max}^B \text{ and } q^*\in (0,1) \text{ such that } \tfrac{s}{q^*}=R'\left(\lambda_{\max}^B\right)$

Marginal Revenue $R'(\lambda)$ [blue] and Average Revenue $\frac{R(\lambda)}{\lambda}$ [red]. If c=0.03, then $\lambda_{\max}^B \approx 5 > \lambda_{\min}^S$.

Inefficiency: Excessive Recruitment

Total recruitment costs are an "equilibrium constant"

For all
$$s < \hat{s} = R'\left(\lambda_{\max}^B\right)$$
,
$$\lambda^* = \lambda_{\max}^B \text{ and } q^* \in (0,1) \text{ st. } \frac{s}{q^*} = R'\left(\lambda_{\max}^B\right)$$

Observation: Total recruitment costs are constant for all $s < \hat{s}$:

$$\lambda^* rac{s}{q^*} = \lambda_{\mathsf{max}}^B R' \left(\lambda_{\mathsf{max}}^B
ight)$$

- Cheaper recruitment (lower s) does not lower actual recruitment costs
- Inefficiency: for s small, the recruitment costs are "waste".
 - The seller would prefer to commit to λ_{\max}^B (or even smaller than that) and both—seller and buyers—would be better off.
 - We could get approximate efficiency for small s.
- ullet The higher $R'\left(\lambda_{\max}^{B}
 ight)$, the higher the total recruitment costs

Robustness: Other Auction Formats / Bargaining

Result independent of the auction format by revenue equivalence of standard auctions, extends to English or Dutch auction etc.

Generally:

The shape of $R(\lambda)$ and $U(\lambda)$ is what matters

Ex-ante heterogenous bidder:

Heterogeneous entry costs c or value estimates $\mathbb{E}\left[v\right]$

 \Rightarrow Pure Equilibrium, bidders enter when c is low or value estimate high

Similar structure and qualitative insights but not exactly constant recruitment costs etc.

Variation 1: Uncertain Seller Type

Seller's recruitment cost uncertain: $s_{\ell} < s_h$

In equilibrium, seller with s_{ℓ} samples more aggressively than s_h

Sampling bias

Contacted bidders believe the seller is likely to be the one who has sampled many others as well, inducing cautious entry (low q)

Externality

If s_{ℓ} is very low, then s_h is driven out of market.

Continuous distribution of recruitment costs

Seller's solicitation cost s is drawn from a smooth distribution

Example: s is uniform on $[0, s_{max}]$

Then, for some \hat{c} :

- if $c < \hat{c}$, then $q^* = 1$ and all sellers choose $\lambda^*(s) > 0$, with $R'(\lambda^*(s)) = s$
- if $c > \hat{c}$, then $q^* = 0$ and all sellers choose $\lambda^*(s) \equiv 0$ for s > 0

Variation II: Unobservable Participation

Bidders do not observe participation n (number of competitors): bidding behavior depends on bidders beliefs $\hat{\lambda}$ and not on actual λ .

Seller has lower recruitment incentives with unobservable participation.

- 1. When there is trade and s is small, lower total recruitment cost. [Auction that extracts less marginal surplus good for seller.]
- 2. For intermediate $s \in [\hat{s}_0, s_{\text{max}}]$, no-trade outcome ($\lambda^* = 0$) is unique. [Unravelling: Relative to optimal participation with observable participation, seller has incentive to secretly reduce recruitment.]
- 3. For smaller s, robust no-trade equilibrium with $\lambda^*=0$ and $\beta^*\equiv 0$. [Bidders expect no competition and bid $0\Rightarrow$ recruitment unprofitable.]

Problem: Seller cannot credibly commit to generate sufficient competition.

With commitment: revenue equivalence with unobservable n Without commitment: FPA (above) and SPA not revenue equivalent

Variation III: Quality Uncertainty

Uncertain quality of seller's object; binary example h or ℓ Bidders have "common values": v_h or v_ℓ for all bidders Bidders observe noisy signals about quality

Winner's curse: Winning is bad news about value. Stronger winner's curse if more bidders participate The more bidders, the *lower* the bids

Result

Equilibrium also has excessive recruitment, even if c=0. Total recruitment costs are constant in s.

As s decreases, seller recruits more and more. However, bidders increasingly cautious, submit less aggressive bids.

Caveat: Equilibrium may not exist (Lauermann and Speit, 2019, "Bidding with Uncertain Number of Competitors").

Literature Connections

Auctions with Costly Entry (Levin&Smith, 1994, and others)

- Optimal auction design with commitment
- Main Finding: Seller can extract full surplus and chooses an efficient auction (0 reservation price; entry coordination).
- Observation: Marginal surplus of additional bidder $=U(\lambda)$

Lauermann&Wolinsky (2017,2019)

- Common value auction with informed seller
- Being recruited already contains information ("solicitation curse")
- Solicitation curse may soften price competition; inhibit price discovery

Simultaneous Search (Burdett&Judd, 1983)

- Searcher chooses a fixed sample of price
- We add asymmetric information and price quoting costs

Conclusion

Auction with endogenous participation, jointly determined by

- seller's costly recruitment effort ("marketing")
- buyer's costly entry ("bid preparation/evaluation")

Tension between seller's desire to induce aggressive bidding and participation

- Inefficiencies:
 - Wasteful recruitment, even if recruitment is cheap
 - Market breakdown possible
- Variations
 - 1. Uncertain seller costs: sampling bias introduces negative externalities
 - Unobserved participation: lower recruitment incentives can reduce waste but also lead to too little competition (secret reduction of recruitment).
 - Quality Uncertainty: excessive caution and winners' curse have similar implications