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1. Introduction

Any seller of a mass-market good faces the challenge of designing a single good to appeal to a

large number of diverse consumers. The decision of interest is not how many copies of a good

to make but how to best design the template used to generate copies. In this paper, we view

the good not as the physical product sold but the design of the template. This makes the good

non-rivalrous: the template can be replicated indefinitely, or enjoyed by many people, without

diminishing others’ ability to enjoy further copies. Just as two people can enjoy the same public

park if they are given access, two people can enjoy an identically designed smart phone if given

the hardware. We study the problem of how to optimally design and sell an excludable, non-

rivalrous good also known as “club goods.” In particular, the seller chooses a single quality level

for the good to be enjoyed commonly by all consumers of the good. In addition, the seller may

restrict access to the good and collects transfers.

Virtually any product sold as identical goods to more than one person will fit into this

framework. For example, producers of popular movies, books, television programming and

music rely on wide appeal to generate profits, rather than finding the ideal fit for each customer.

Schools must contend with how to design lectures and deliver courses and, as technology relaxes

physical constraints to the learning environment, whom to exclude, if anyone. Mass-produced

goods such as furniture, electronics, and some food and drinks have the same characteristic.

Most restaurants offer consistent menus over time as customers flow through, certainly in the

case of national and global chains. Many non-profit outfits such as library, schools, museums,

theatres and orchestras, and public parks similarly satisfy large groups with limited offerings.

An important feature of the type of goods we consider is the mixture of both private and

common-value components for buyers, i.e. preferences are interdependent.1 Informally, infor-

mation one buyer receives regarding the product may be relevant to other buyers. For example,

buyer 1 may hear rumours about a new phone’s processing speed and buyer 2 may hear about

its screen size. Both attributes determine the value of the product for each buyer, possibly in

different ways since buyers need not agree on what makes a product valuable – buyer 1 may

prefer a small screen while buyer 2 prefers a large one.

Interdependent preferences present a technical challenge to the characterization of the opti-

mal mechanism. Buyers receive signals about their valuations for the good but do not observe

the signals of other buyers. The seller’s problem is to choose the quality of the good in order

1Milgrom and Weber (1982) first introduced the notion of interdependent preferences in an auction environ-
ment. Subsequently, a number of papers have incorporated interdependent preferences into models of mechanism
design, e.g. Jehiel et al. (1999); Jehiel and Moldovanu (2001); Figueroa and Skreta (2011), Csapó and Müller
(2013) and Roughgarden and Talgam-Cohen (2016). In each of these papers, the good being sold is rivalrous.
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to maximize profits in expectation over the possible preferences of the buyers. Importantly, the

seller knows only the distribution of possible signals of the buyers and does not observe the real-

ized signals. In order to choose the optimal selling mechanism, the seller must elicit information

from the buyers about their willingness to pay for the good. Using standard arguments in mech-

anism design theory, this process can be done by imposing constraints on the seller’s choice of the

mechanism that incentivize the buyers to truthfully reveal their information.2 These incentive

compatibility constraints ensure that buyers optimally reveal their information truthfully. After

some manipulation, the relevant constraint on the mechanism is that each buyer’s payoff, net of

any transfers to the seller, must be increasing in her private information.

In a pure private-values setting without common-value components to buyers’ preferences,

fairly mild assumptions on the preference distributions ensure that these monotonicity con-

straints do not bind and can be ignored. This so called “regular” environment is appealing

because the objective function is typically linear or concave in the seller’s choice variables and

the optimal allocation can be easily derived from the first-order conditions. With interdependent

values, however, the assumptions needed to make the environment regular become too restric-

tive. Moreover, the classic ironing technique of Mussa and Rosen (1978) cannot be immediately

applied to an interdependent-values environment, which is naturally multidimensional.3 The

complication is that preferences are functions of many variables (i.e. the signals of all buyers)

whereas the ironing technique depends on the unidimensionality of preferences.4

Using tools from majorization theory, we develop a constructive approach to multidimensional

ironing.5 We generalize the “ironing” approach of Mussa and Rosen (1978) by manipulating buy-

ers’ interdependent preferences to generate an alternative problem whose unconstrained solution

is the same as the solution to the original constrained problem. We show that, by defining

the appropriate concept of multivariate majorization, we can find the needed ironed preferences

through a simple quadratic minimization problem. Our definition for multivariate majorization

is suggested by the structure of the Kuhn-Tucker conditions governing the constrained problem.

2A choice of mechanism involves choosing the quality of the good, a set of access rights for the buyers, and
a set of transfers.

3An additional complication arises since we make no assumption on the additive separability of other buyers’
signals in a buyer’s preferences. If, for example, all buyers’ valuations are sums of buyers’ signals then a slight
modification of the ironing technique can deal with the constraints: one irons in each dimension holding all other
dimensions fixed, i.e. in dimension of buyer i’s signal holding all others’ signals constant. This works because
with such preferences, the seller’s problem is mathematically identical to one with private values. More generally,
as in the environment we study, each dimension of preferences have to be manipulated simultaneously disallowing
any use of the univariate ironing technique.

4Roughgarden and Talgam-Cohen (2016), for example, note that a naive generalization of ironing in a model
with interdependent preferences fails to properly account for incentive-compatibility constraints.

5The connection between one-dimensional ironing and univariate majorization, in particular the work of
Hardy et al. (1929), was first noted by Goeree and Kushnir (2011).
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Rochet and Choné (1998) introduce the concept of “sweeping” to deal with multidimensional

incentive-compatibility constraints.6 Roughly, sweeping is an operation that redistributes the

density of a measure in a way that preserves the original center-of-mass. Rochet and Choné

(1998) do not use sweeping to construct a solution but instead its use is to verify whether a

candidate incentive-compatible solution is optimal. Specifically, their results say that if the

derivative of the first-order condition of the seller’s unconstrained problem, evaluated at the

candidate solution, is non-zero but can be “swept” to zero then the candidate solution is optimal.7

We discuss how Rochet and Choné’s (1998) sweeping method is related to our majorization

approach.

Besides our interpretation of the seller choosing design quality, one can also view our model

as the private provision of a public good with private information, with the seller choosing the

quantity of the public good to provide. The analysis of this problem in a mechanism design

framework goes back at least as far as Groves and Ledyard (1977). Classically, the decision

is binary, i.e. to provide the good or not, and participation is compulsory, i.e. the good is

non-excludable. The relevant question is whether the good is provided efficiently (see Güth

and Hellwig, 1986; Malaith and Postlewaite, 1990; Csapó and Müller, 2013).8 More recently,

exclusions and continuous levels of the good have been allowed (see Cornelli, 1996; Ledyard and

Palfrey, 1999; Hellwig, 2003; Norman, 2004; Ledyard and Palfrey, 2007). With the exception of

Csapó and Müller (2013), preferences in the papers cited above are purely private valued.

This paper is organized as follows. Section 2 describes the environment and defines the

seller’s problem. Section 3 introduces our novel definition of multivariate majorization. Section

4 derives the optimal mechanism when all buyers have access (public goods) and when access

is restricted (club goods). Section 5 discusses applications and extensions. Section 6 concludes.

Proofs can be found in Appendix A.

6In their environment, a monopolist sells to a consumer with multidimensional preferences, each dimension
corresponding to an attribute of the good designed by the seller.

7The intuition is that the first-order condition of the unconstrained problem evaluated at the candidate
solution measures how valuable it is for the seller to deviate from the candidate solution. The fact that a mass-
preserving redistribution of this value is zero means that any marginal profit the seller gains from a change from
the candidate solution at some initial point will be exactly offset by a loss incurred through the change in the
candidate solution at another point made necessary, via incentive compatibility, by the change at the initial point.

8Csapó and Müller (2013) study the private provision of a public good from a computer science perspective.
They find that the solution can be solved in polynomial in the number of agents and type profiles.
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2. Model

There is a set N = {1, . . . , n} of buyers with preferences over a good to be provided by a

seller. The seller chooses: (i) the quality q ∈ R≥0 of a product to supply; (ii) access rights

η = {η1, . . . , ηn} ∈ [0, 1]n where ηi is the probability that buyer i will be allowed to consume the

good; and (iii) transfers t = {t1, . . . , tn} ∈ Rn where ti is the amount to collect from buyer i.

Under the restriction ηi = 1 for all i ∈ N the good is not excludable, i.e. it is a public good.

Buyers each receive a private signal regarding the value of the good. We refer to a buyer’s

signal as her type. Buyer i’s type xi is drawn from Xi according to distribution Fi(xi) with

probability function (or density if Xi is continuous) fi(xi). We make no assumption on Xi or

Fi. Let xi = minXi and xi = maxXi. For a profile of types we write x = {xi,x−i} with

x−i = {x1, . . . , xi−1, xi+1, . . . , xn}. The set of all possible type profiles is X =
∏

i∈N Xi with

X−i =
∏

i∈N\{i}Xi. We assume types are drawn independently across bidders, i.e. x is drawn

according to f(x) =
∏

i∈N fi(xi). For arbitrary g : X → R we define the partial derivatives

∆ig(x) = g(xi,x−i)− g(x−i ,x−i) and ∆ig(x) = g(x+i ,x−i)− g(xi,x−i) where x+i (x−i ) is the type

just above (below) xi with the convention that ∆ig(xi,x−i) = g(xi,x−i) and ∆ig(x̄i,x−i) = 0.

(In the case of continuous types, ∆ig(x) = ∆ig(x) = ∂xig(x).)

Buyer i’s payoff is quasilinear. Her valuation for the good depends on her own signal as well

as the signals of all other buyers, i.e. valuations are interdependent. In particular, her valuation

for the good given type profile x ∈ X is vi(x)q(x), where vi : X → R is non-decreasing in xi for

all x−i ∈ X−i. Buyer i’s payoff, given choices (q,η, t) by the seller and type profile x ∈ X is

ui(q,η, t; x) = vi(x)q(x)ηi(x)− ti(x).9

The seller’s problem is to choose a mechanism to maximize the expected sum of transfers

from buyers net of the expected cost. The cost of providing quantity q is C(q), which is assumed

to be an increasing convex (and differentiable) function with C(0) = C ′(0) = 0. Due to the

revelation principle, we can focus on (incentive compatible) direct mechanisms: (q,η, t) where

(i) q : X → R≥0 maps type profiles into quantity choices; (ii) η : X → [0, 1]n maps type profiles

into access rights; and (iii) t : X → Rn maps type profiles into transfers.

Let E[g(x)] =
∑

x∈X f(x)g(x). We sometimes write ||g||2 = E[g(x)2] for the squared norm

of g and 〈g |h〉 = E[g(x)h(x)] for the inner-product between g and h. The seller’s problem is

therefore to choose a direct mechanism (q,η, t) to maximize

E
[∑
i∈N

ti(x)− C(q(x))
]

9More generally, payoffs could depend nonlinearly on q, for example ui(q,η, t;x) = vi(x)w(q) for some
increasing, concave w. This is equivalent to our formulation up to a change in units for costs.
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subject to (ex post) incentive compatibility, i.e. for all i ∈ N and x ∈ X

xi ∈ argmax
x̂i ∈Xi

ui (q(x̂i,x−i), ηi(x̂i,x−i), ti(x̂i,x−i); x)

and individual rationality, i.e. ui(q(x), ηi(x), ti(x); x) ≥ 0 for all i ∈ N and x ∈ X.

Proposition 1 A direct mechanism (q,η, t) is incentive compatible and individually rational if

and only if, for all i ∈ N , x ∈ X, q(x)ηi(x) non-decreasing in xi and

ti(x) = vi(x)q(x)ηi(x)−
∑
si<xi

∆ivi(si,x−i)q(si,x−i)ηi(si,x−i) (1)

The proof of this proposition is standard and is therefore omitted.10

Using equation (1), we can rewrite the seller’s profit as

Π(MR, q,η) = E
[
q(x)

∑
i∈N

MRi(x)ηi(x)− C(q(x))
]

(2)

where MR = {MR1, . . . ,MRn} and

MRi(x) = vi(x)− 1− Fi(xi)
fi(xi)

∆ivi(x) (3)

Proposition 1 allows us to restate the seller’s problem: choose the quality, q(x), and access

rights, η(x), to maximize (2) such that ηi(x)q(x) is non-decreasing in xi for all i ∈ N , x ∈ X
and set transfers, t(x), according to (1). Let Π∗ denote the seller’s optimal profits when using

the optimal mechanism (q∗,η∗, t∗).

The unconstrained solution to the seller’s problem is simple to characterize: set ηi(x) = 1 if

MRi(x) > 0 and ηi(x) = 0 otherwise and choose q(x) such that C ′(q(x)) =
∑

i∈N MRi(x)ηi(x).

Such a mechanism will be incentive compatible, i.e. q(x)ηi(x) will be non-decreasing in xi for

all i ∈ N , x ∈ X, as long as
∑

i∈N MRi(·)ηi(·) is sufficiently well behaved. We want to maintain

the simple structure of the solution but do not want to be bound by the assumptions needed

to make the parameters well behaved. Instead, we seek to manipulate the parameters MR in

order to generate an equivalent unconstrained problem. That is, we are looking for MR such

that the solution (q,η) to the unconstrained problem (ignoring incentive constraints)

(q,η) = argmax
(q,η) :X→R≥0×[0,1]n

Π(MR; q,η)

is also the solution to the full problem: Π(MR, q,η) = Π∗. To construct the sought after MR,

we expand on a concept in mathematics called majorization.

10The utility of the lowest type is set to zero as is standard in the context of a revenue-maximizing seller.
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3. Multivariate Majorization

It is instructive to start with the case where all buyers have access to the public good, i.e. ηi = 1

for all i ∈ N , and costs are quadratic. The seller’s problem

Π = max
q :X→R≥0

q(x) non-decreasing

E
[
q(x)MR(x)− 1

2
q(x)2

]

where MR(x) =
∑

i∈N MRi(x), can be solved using standard Kuhn-Tucker methods. To deal

with the constraint that q(x) be non-decreasing in xi for all i ∈ N we add
∑

i∈N,x∈X λi(x)∆iq(x)

to the objective where, for all i ∈ N , the λi(x) are non-negative for all x ∈ X with λi(xi,x−i) = 0

for all x−i ∈ X−i. This term can rewritten to obtain the saddle-point problem

Π = min
λ :X→R≥0

max
q :X→R≥0

E
[
q(x)MR(x,λ(x))− 1

2
q(x)2

]
(4)

where MR(x,λ(x)) =
∑

i∈N MRi(x, λi(x)) and

MRi(x, λi(x)) = MRi(x)−∆iλi(x)/f(x) (5)

For x,y ∈ X we write y ≤ x (y < x) if yi ≤ xi (yi < xi) for i ∈ N .

To solve for the constraint coefficients, we derive a multivariate extension of majorization.

We start with the multivariate version of a lower sum.

Definition 1 A closed subset X− ⊆ X is a lower set of X if x ∈ X− and y ∈ X with y ≤ x

implies y ∈ X−.

For instance, each of the subsets in the left panel of Figure 1 is an example of a lower set, while

neither subset in the right panel is. Let ∂X− denote the upper boundary of X−: x ∈ ∂X− if

there does not exist y ∈ X− such that y > x. For instance, in the left panel of Figure 1, the

upper boundaries of X−, X ′−, and X ′′− coincide with their borders in the interior of X plus the

points where the interior border intersects the axes. Let ∂iX− denote the upper boundary for

buyer i ∈ N : x ∈ ∂iX− if x ∈ ∂X− and there does not exist (x′i,x−i) ∈ ∂X− with x′i > xi. For

X− and X ′−, buyers’ upper boundaries coincide with the upper boundary, while for X ′′−, buyer

1’s (2’s) upper boundary consists of all the vertical (horizontal) segments of the upper boundary.
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X ′
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Figure 1: In the left panel X−, X ′− and X ′′− are all lower sets of X. In the right panel, X ′ and
X ′′ are not lower sets of X.

Since
∑

s≤xi ∆iλi(s,x−i) = λi(xi,x−i) for any x−i ∈ X−i, (5) implies, for any lower set X−,

E
[
MR(x,λ(x)) |x ∈ X−

]
= E

[
MR(x)−

∑
i∈N

∆iλi(x)/f(x) |x ∈ X−
]

= E
[
MR(x) |x ∈ X−

]
− 1

F (X−)

∑
i∈N

∑
x∈ ∂iX−

λi(x)

≤ E
[
MR(x) |x ∈ X−

]
(6)

where F (X−) =
∑

x∈X− f(x). Equation (6) holds with equality if, for i ∈ N , λi(x) vanishes on

∂iX−. In particular, since λi(x̄i,x−i) = 0 for all x−i ∈ X−i and i ∈ N , we have

E
[
MR(x,λ(x))

]
= E

[
MR(x)

]
(7)

Together (6) and (7) define the multivariate extension of majorization to n-dimensional functions.

Definition 2 For g : X → R, h : X → R, g majorizes h, denoted g � h, if for any lower

set X− ⊂ X we have E [g(x)|x ∈ X−] ≤ E [h(x)|x ∈ X−] and E [g(x)] = E [h(x)] .

Remark 1 Alternative definitions of multivariate majorization exist in the mathematics liter-

ature, e.g. row-majorization, column-majorization, and linear-combinations majorization (see

Marshall et al., 2010, Chapter 15). None of these alternative definitions are equivalent to Defi-

nition 2 nor do they originate from a Kuhn-Tucker like program. �

We will also use a notion of univariate majorization that applies to multidimensional functions.

For the univariate case, the lower sets are simply (discrete) intervals starting at the lowest type.
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Definition 3 For g : X → R, h : X → R, g majorizes h in coordinate i, denoted g �i h,

if for all s ∈ X, E[g(x) |xi ≤ si,x−i = s−i] ≤ E[h(x) |xi ≤ si,x−i = s−i] with equality if si = xi.

We will use below that if gi �i hi for i ∈ N then
∑

i∈N gi �
∑

i∈N hi.

Remark 2 The univariate-majorization literature typically considers only non-decreasing func-

tions and defines the preorder � in terms of upper sets, i.e. (discrete) intervals that end at the

highest type. The latter difference is immaterial because of (7). To align with the literature we

could reorder functions so they are non-decreasing. However, this would make comparison with

Mussa and Rosen’s (1978) ironing impossible. Hence, we take the (possibly non-monotonic) MR

functions as exogenously given and define � for all functions including non-monotonic ones. �

3.1. Multivariate Majorization and Doubly Stochastic Matrices

In the majorization literature, the −∆iλi(x) term in (5) is known as a “Dalton transfer.” It

involves taking λi(x) ≥ 0 from type (xi,x−i) and passing it to a higher type (x+i ,x−i), which is

why it is also known as an anti “Robin Hood” transfer. A “Robin Hood” involves transferring

λi(x) ≥ 0 from the higher type (x+i ,x−i) to (xi,x−i), which amounts to reversing the sign of the

shift in (5) and defining MRi(x,λ(x)) = MRi(x) + ∆iλi(x)/f(x).

Equivalently, we could transform the marginal revenues using proportional transfers. A well-

known concept in the univariate-majorization literature is the T -transform, which is a doubly

stochastic operator of the form T = αI+ (1−α)P where I is the identity, P a permutation that

interchanges only two elements, and 0 ≤ α ≤ 1. The image of a univariate sequence (g1, . . . , g|X|)

under a T -transform is (g1, . . . , αgi+(1−α)gj, . . . , αgj+(1−α)gi, . . . , g|X|), i.e. there is a transfer

(1−α)(gj−gi) from type j to i. If g represents “wealth” and is non-decreasing in type then this

amounts to a non-negative transfer from a “wealthier” to a “poorer” type (i.e. it is a “Robin

Hood” transfer). Muirhead (1903) showed that for non-decreasing functions g and h, a necessary

and sufficient condition for g � h is that h can be obtained from g via a series of T -transforms.

A similar result can be obtained for functions defined over a multidimensional type set X if

we restrict transfers to be between type profiles that differ only for a single buyer, i.e. between

(xi,x−i) and (x′i,x−i) for some i ∈ N , xi, x
′
i ∈ Xi, and x−i ∈ X−i. We refer to T -transforms of

this type as orthogonal T -transforms.

Proposition 2 Let g(x) and h(x) be non-decreasing in each coordinate. Then g � h if and only

if h(x) can be obtained from g(x) via a series of orthogonal T -transforms.

For the univariate case, Hardy et al. (1929) sharpened Muirhead’s (1903) result to g � h if

and only if h = S · g for some doubly stochastic matrix S. But in the multivariate case, the

8



orthogonality requirement restricts the possible doubly-stochastic transformations.11

3.2. Minimal Elements

Let us return to the seller’s problem in (4). The (unconstrained) maximization over q(x) yields

q(x) = max(0,MR(x)) and Π = 1
2
E[q(x)2] where

MR(x) = argmin
g :X→R
g�MR

E
[
g(x)2

]
(8)

The next lemma shows why we can take the objective to be E[g(x)2] rather than E[max(0, g(x))2].

Lemma 1 If MR(x) satisfies (8) then

MR(x) = argmin
g :X→R
g�MR

E
[
φ(g(x))

]

for any convex function φ : R→ R, e.g. φ(x) = max(0, x)2.

An easy corollary is that if the quadratic cost is replaced by a general convex cost function,

C(q), the same solution for MR(x) applies. The optimal quality is q(x) = C ′−1(max(0,MR(x)))

and Π = E
[
φ(max(0,MR(x)))

]
, where φ(y) = yC ′−1(y)− C(C ′−1(y)) is convex if C(·) is.

From (8), MR is the smallest function, with respect to the norm ||g|| =
√

E[g(x)2], that

majorizes MR. It is also “smallest” with respect to the pre-order ≺ because if there existed

MR ≺ g ≺ MR then g can be obtained from MR via series of orthogonal T -transforms (see

Proposition 2). But then g would yield a lower objective in (8). We say that MR is a minimal

element with respect to ≺ if MR ≺ g ≺MR implies g = MR.

Proposition 3 There exists a solution MR(x) to (8). This solution is unique, non-decreasing,

and a minimal element with respect to ≺.

Unlike the univariate case, there may exist multiple minimal elements in the multivariate case.12

11Consider, for instance, g =
( 0 2

4 6

)
where the rows (columns) correspond to buyer 1’s (2’s) types. If h is

obtained from g by averaging along columns or rows then g � h but not if we average along the diagonal, i.e.( 0 2
4 6

)
�
( 1 1

4 6

)
but

( 0 2
4 6

)
6�
( 0 3

3 6

)
and

( 0 2
4 6

)
6≺
( 0 3

3 6

)
.

12Goeree and Kushnir (2011) show for the univariate case that MR(x) is the unique minimum with respect
to ≺.
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Example 1 Suppose there are two agents with equally-likely types in X1 = X2 = {0, 1} and

value functions vi(xi, x−i) = 3 + 3xix−i − 3x−i for i = 1, 2. Then the marginal revenues are

MR1 =

(
3 −3
3 3

)
and MR2 =

(
3 3
−3 3

)
where the rows (columns) correspond to buyer 1’s (2’s) types. The program in (8) entails

minimizing the sum of the squared entries of(
6− λ1 − µ1 −λ2 + µ1

λ1 − µ2 6 + λ2 + µ2

)
with respect to non-negative λs (for player 1) and µs (for player 2), which yields λ1 = µ1 = 2

and λ2 = µ2 = 0 so13

MR =

(
2 2
2 6

)
For 0 ≤ α < 1,

g(α) =

(
2α 2α

6− 4α 6

)
is non-decreasing and satisfies g(α) � MR but not g(α) � MR. The same is true for the

transpose of g(α). It is readily verified that g(α) and its transpose are minimal elements with

respect to � for α ∈ [0, 1]. (And they are extreme points only if α ∈ {0, 1}.) �

3.3. Characterizing the Ironed Marginal Values

In this section, we provide a general expression for the ironed marginal revenues MR(x).

Definition 4 S ⊆ X is ortho-convex if (xi,x−i) ∈ S and (x′i,x−i) ∈ S implies (x,x−i) ∈ S for

all min(xi, x
′
i) ≤ x ≤ max(xi, x

′
i), i ∈ N , x−i ∈ X−i. A partition P of X is ortho-convex if all

its cells are ortho-convex.

An alternative definition is that S ⊆ X is ortho-convex if for any line parallel to one of the axes,

the intersection with S is empty, a point, or a single segment. (Akin to the definition of convex

sets for which the intersection with any line is empty, a point, or a single segment.) The reason

for considering ortho-convex, rather than convex, partitions is that the incentive-compatibility

constraints for player i ∈ N impose restrictions only along the xi coordinate.14 As a result, the

ironed sets are convex along each orthogonal but they are not necessarily convex subsets of the

n-dimensional type space X (although they could be for certain parameter values).

13Note that one cannot simply iron the marginal revenues of each player separately and then add them back
together, as pointed out by Roughgarden and Talgam-Cohen (2016). In this example, majorizing the MRi

separately would leave them unchanged and their sum would not be non-decreasing.
14And player i’s equilibrium utility ui(q(x), ηi(x), ti(x);x) is convex only in xi.
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Proposition 4 The level sets of the solution MR(x) to (8) form an ortho-convex partition

P of X. For x ∈ X, P (x) = {y |MR(y) = MR(x)} is the cell of P containing x and

MR(x) = E[MR(y) |y ∈ P (x)]. Moreover,

S(x,y) =
f(y)

F (P (x))
δy∈P (x) (9)

is a stochastic operator that maps MR to MR.

For Example 1, the partition is P = P1 t P2 with P1 = {(0, 0), (1, 0), (0, 1)} and P2 = {(1, 1)},
and the stochastic operator is S(x,y) = 1

3
δx,y∈P1 + δx,y∈P2 .

3.4. Alternative Formulations

We end this section with an alternative to the program in (8). Recall that ||g|| =
√

E[g(x)2].

Proposition 5 The solution MR(x) to (8) also follows from

MR(x) = argmin
g :X→R

g(x) non-decreasing

||MR(x)− g(x)|| (10)

or, equivalently,

MR(x) = MR(x)− argmin
g :X→R

MR(x)−g(x) non-decreasing

||g(x)|| (11)

The program in (10) establishes MR(x) as the non-decreasing function closest to MR(x). The

program in (11) shows that MR(x) is obtained from MR(x) by subtracting the smallest function

so that the result is non-decreasing.

For Example 1, the solution g to (11) is

g =

(
4 −2
−2 0

)
Note that the sum of g over any lower set is non-negative. More generally, for g : X → R, we

could define the signed measure µg(X
′) = E[g(x)|x ∈ X ′] for any X ′ ⊆ X, and say µg is lower-set

positive if µg(X−) ≥ 0 for any lower set X− ⊂ X and µg(X) = 0. Since MR(x) � MR(x), the

solution g to (11) generally defines a lower-set positive measure µg.

4. Characterizing the Optimal Mechanism

The optimal mechanism for the public goods case (ηi = 1 for all i ∈ N) is readily obtained using

the multivariate majorization results of the previous section.
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Proposition 6 The optimal mechanism for public goods is given by {q∗(x), t∗i (x)} where

q∗(x) = C ′−1
(
max(0,MR(x))

)
and

t∗i (x) = vi(x)q∗(x)−
∑
si<xi

∆vi(si,x−i)q
∗(si,x−i)

where MR(x) =
∑

i∈N MRi(x) follows from (8).

The optimal quality coarsens the partition induced by the ironed marginal revenue MR(x) since

the profiles for which MR(x) < 0 are pooled. Let Q denote the partition induced by q∗(x)

and let Q(x) = {y ∈ X | q∗(y) = q∗(x)} be the cell of Q that x belongs to. A singleton Q(x)

corresponds to a unique quality level while profiles are “pooled” or “bunched” when |Q(x)| > 1.

Generally, the partition Q will have the structure

Q = Q0

⋃
∪QP

⋃
∪QS

where Q0 is the set on which q∗(x) vanishes, QP are sets with more than one element on which

q∗(x) is constant, and QS are singleton sets. This partition is reminiscent of that in Rochet and

Choné (1998) except that in their model there is a single non-empty Q0, QP , and QS, which is

not necessarily the case here.

Example 2 Suppose costs are quadratic, types are uniform on X1 = X2 = {0, 1, 2}, and valua-

tions are vi(xi, x−i) = 1 + 1
2
xi + 9x−i(2− x−i) for i = 1, 2, then

MR =

( 0 10 2
10 20 12
2 12 4

)

The program in (8) yields

MR =

( 0 6 6
6 12 12

6 12 12

)

so Q0 = {(0, 0)}, QP = {(0, 1), (0, 2), (1, 0), (2, 0)} ∪ {(2, 2), (2, 3), (3, 2), (3, 3)}, and QS = ∅.
The seller’s profit is Π∗ = 1

2
E[q2] with q = MR so Π∗ = 360. �

4.1. Discriminatory Access Rights

Discriminatory access rights can take the form of all-or-nothing access rights that can be used

to screen out negative marginal revenues. In addition, probabilistic access rights can be used to

alleviate incentive constraints and allow the ironed marginal revenues to be closer to the original

12



individual marginal revenues. As we will see, this type of constrained majorization results in

higher profits in Example 2.

With access rights the seller’s problem is

Π = max
(q,η) :X→R≥0×[0,1]n

ηi(x)q(x) non-decreasing in xi

E
[
q(x)

∑
i∈N

ηi(x)MRi(x)− C(q(x))
]

The constraint that ηi(x)q(x) is non-decreasing in xi for all i ∈ N can be dealt with by adding∑
i∈N,x∈X λi(x)∆i(ηi(x)q(x)) where the λi(x) are non-negative for all x ∈ X with λi(xi,x−i) = 0

for all i ∈ N . This term can rewritten to yield the following saddle-point problem

Π = min
λ :X→R+

max
(q,η) :X→R≥0×[0,1]n

E
[
q(x)

∑
i∈N

ηi(x)(MRi(x)−∆iλi(x)/f(x))− C(q(x))
]

The ηi(x) enter linearly so maximizing over them yields ηi(x) ∈ {0, 1} unless the shifted marginal

revenue they multiply is 0 in which case ηi(x) can be fractional. This turns the sum on the

righthand side into
∑

i∈N max(0,MRi(x) − ∆iλi(x)/f(x)). Maximizing over q(x) then yields

q(x) = C ′−1(
∑

i∈N max(0, M̃Ri(x))) and

Π = E
[
φ
(∑
i∈N

max(0, M̃Ri(x))
)]

where φ(y) = yC ′−1(y)− C(C ′−1(y)) is convex and the M̃Ri(x) follow from

M̃R(x) = argmin
gi :X→R
gi �MRi

E
[(∑

i∈N

max(0, gi(x))
)2]

(12)

As in the previous section, we could replace the sum of squares by an arbitrary convex function.

However, unlike the previous section, this does not allow us to replace the max(0, gi(x)) with

gi(x) since the max(0, ·) operation is applied to each term separately rather than to the sum∑
i∈N gi(x). As a result, there is a trivial way in which the solution to (12) is no longer unique,

unlike the solution to (8). If M̃Ri(x) < 0 for some x ∈ X, i ∈ N then we could replace it with

any other negative number. This multiplicity poses no problem since these cases are screened

out and the optimal mechanism is unique, see Lemma 2 in Appendix A.

A main difference with the previous section is that we cannot use level sets of M̃R(x) =∑
i∈N M̃Ri(x) to define the partition P. To illustrate, consider Example 2 for which (12) yields

M̃R =

( 0 9 3
9 14 14
3 14 6

)

13



Based on level sets, P would consist of five cells: two singletons, two sets of size two, and a

set of size three. However, this partition violates the majorization requirement that M̃R has the

same expected value as MR on each cell.

The correct partition can be obtained from the program in (12), which can be executed by

parameterizing g(x) = MR(x)−
∑

i ∆iλi(x), with λi(x) ≥ 0 and λi(xi,x−i) = 0 for i = 1, 2 and

x ∈ X, and then minimizing over the λis. This yields

λ1 =

( 0 0 0

1 3 1

0 0 0

)
λ2 =

( 0 1 0

0 3 0

0 1 0

)

For buyer i we fix x−i and find the smallest xi (if any) for which λi(xi, x−i) > 0 as well as the

smallest x′i > xi for which λi(xi, x−i) = 0 to form the ortho-convex sets, {(x, x−i)|xi ≤ x ≤ x′i},
which are highlighted above. We do this for all buyers and then “overlay” the individual ortho-

convex sets to find the partition. Profiles that do not belong to any of the highlighted sets

form singletons on which M̃R(x) = MR(x). For the above example, the correct partition is:

X = P1 t P2 t P3 t P4 where P1 = {(0, 0)}, P2 = {(0, 1), (0, 2)}, P3 = {(1, 0), (2, 0)}, and

P4 = {(2, 2), (2, 3), (3, 2), (3, 3)}. Now M̃R has the same expected values as MR on each of the

cells. Note that M̃R is not necessarily constant on a cell, unlike MR. Incentive compatibility is

maintained by choosing appropriate access rights, i.e.

η1 =

( 0 1 0
1
3

1 3
7

1 1 1

)

and η2 is the transpose of η1. The seller’s profit is Π∗ = 1
2
E[q2] with q = M̃R so Π∗ = 402.

Proposition 7 Let P denote the ortho-convex partition of X generated by (12). For x ∈ X,

let P (x) be the cell of P containing x and let Pi(x) = {y ∈ P (x)|y−i = x−i}. The optimal

mechanism for excludable goods is given by (q∗,η∗, t∗) where

q∗(x) = C ′−1
(∑
i∈N

max(0, M̃Ri(x))
)

and, for i ∈ N ,

η∗i (x) =


0 if M̃Ri(x) < 0

η0i (x) if M̃Ri(x) = 0

1 if M̃Ri(x) > 0
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where η0i (x) is such that q∗(x)η0i (x) is constant on Pi(x) and non-decreasing in xi,
15 and

t∗i (x) = vi(x)q∗(x)η∗i (x)−
∑
si<xi

∆ivi(si,x−i)q
∗(si,x−i)η

∗
i (si,x−i)

Probabilistic access rights do not only arise as knife-edge cases. They allow the ironed marginal

values and, hence, the optimal quality to more closely track the original marginal values when

the latter are non-monotonic. As a result, the seller is better off while buyers may benefit or be

worse off – see Section 5.4 for an example of the former and Example 1 for the latter. In both

cases, however, access rights are welfare improving.

4.2. Welfare Maximizing Mechanisms

The welfare-maximizing mechanism can be derived similarly to Proposition 7. Simply replace

the M̃Ri(x) in that proposition with ṽi(x), where the ṽi for i ∈ N follow from

ṽ(x) = argmin
gi :X→R
gi � vi

E
[(∑

i∈N

max(0, gi(x))
)2]

Even though vi(x) is non-decreasing in xi for all i ∈ N , their sum may not be non-decreasing in

each coordinate, hence the need to majorize. For Example 2, this yields

ṽ =

( 2 10 9
2

10 43
3

43
3

9
2

43
3

7

)

where ṽ(x) = ṽ1(x) + ṽ2(x). Incentive compatibility is maintained using probabilistic access

rights, i.e.

η1 =

( 1 1 1
9
20

1 21
43

1 1 1

)
and η2 is the transpose of η1. This shows that probabilistic access rights can be socially optimal.

The same is true for binary or “all-or-nothing” access rights used to exclude negative values, see

Section 5.4.

5. Continuous Types

In this section, we extend our approach to continuous types, which allows for a more direct

comparison to Mussa and Rosen’s (1978) one-dimensional “ironing” technique. We also discuss

15In detail, (i) if there exists y ∈ Pi(x) such that M̃Ri(y) 6= 0 then q∗(x)η0i (x) = q∗(y)η∗i (y), (ii) otherwise
q∗(x)η0i (x) = q∗(y)η0i (y) for all y ∈ Pi(x) and q∗(y)η∗i (y) ≤ q∗(x)η0i (x) ≤ q∗(y)η∗i (y) for any y

i
≤ xi ≤ yi with

M̃Ri(y) 6= 0 and M̃Ri(y) 6= 0.
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connections with Rochet and Choné’s (1998) “sweeping” method that applies to the multi-

dimensional case. As we will show, continuous types can be dealt with in much the same

manner as the discrete-type case studied above.

5.1. Majorization and the Gauss Divergence Theorem

Consider the distance minimization characterization in (10). To ensure the result will be non-

decreasing in each coordinate, we add
∑

i∈N
∫
X
λi(x)∂xig(x) to the (transformed) objective

1
2
||MR(x)− g(x)||2 where λi(x) ≥ 0 and λi(xi,x−i) = λi(xi,x−i) = 0 for i ∈ N and x ∈ X. Let

div(λ(x)) denote the divergence of λ(x), i.e. div(λ(x)) =
∑

i∈N ∂xiλi(x). Similar to the discrete

case we define

MR(x,λ(x)) = MR(x)− div(λ(x))/f(x)

then the first-order conditions imply ∂xiMR(x,λ(x)) ≥ 0 and λi(x)∂xiMR(x,λ(x)) = 0 for

i ∈ N , x ∈ X.

Consider any lower set X− ⊆ X with boundary ∂X− that is the union of the upper boundary

∂X− and the lower boundary ∂X− = ∂X− \ ∂X−. The geometry of lower sets is such that

the normal n(x) to any point x on the upper boundary is positive, i.e. n(x) ≥ 0, whence

λ(x) · n(x) ≥ 0. On the lower boundary we must have xi = xi for some i ∈ N , in which case

the normal n(x) is minus the ith unit vector and λ(x) · n(x) = 0 since λi(xi,x−i) = 0. By the

Gauss divergence theorem we have

E
[
MR(x,λ(x)) |x ∈ X−

]
= E

[
MR(x)− div(λ(x))/f(x) |x ∈ X−

]
= E

[
MR(x) |x ∈ X−

]
− 1

F (X−)

∫
∂X−

λ(x) · n(x)

≤ E
[
MR(x) |x ∈ X−

]
with equality if λ(x) · n(x) = 0 on ∂X−. In particular, since λi(x̄i,x−i) = 0 for all x−i ∈ X−i
and i ∈ N , we have

E
[
MR(x,λ(x))

]
= E

[
MR(x)

]
To summarize, the majorization Definition 2 also applies to functions defined over continuous

type spaces. Moreover, optimality dictates that MR(x,λ(x)) is non-decreasing in each coordi-

nate and complementary slackness dictates that it is flat in the ith direction whenever λi(x) > 0.

5.2. Ironing and Sweeping

The univariate case provides an opportunity to illustrate how majorization relates to Mussa and

Rosen’s (1978) “ironing” and Rochet and Choné’s (1998) “sweeping.” Suppose, for example,

16



that types are uniform and marginal revenue are given by

MR(x) =


2x if x ≤ 1

4
1
2

+ 16(x− 1
4
)(x− 1

2
)(x− 3

4
) if 1

4
≤ x ≤ 3

4

2x− 1 if x ≥ 3
4

Then Mussa and Rosen’s (1978) “ironing” would flatten MR(x) in the middle region to MR(x) =
1
2
. Proposition 4 shows that the ironed marginal revenues can be obtained via the stochastic

operator in (9):

S(x, y) =

{
2 if 1

4
≤ x, y ≤ 3

4

δ(x− y) otherwise

with δ(x) the Dirac δ-function, i.e. MR(x) =
∫ 1

0
S(x, y)MR(y)dy or MR = S ·MR for short.

Rochet and Choné (1998) provide an alternative interpretation in terms of “sweeping.” Seen

as a measure, MR(x) can be obtained from MR(x) by sweeping mass out of [1
4
, 3
4
] to mass-points

at the endpoints of this interval – a “mean-preserving spread.”16 More generally, Rochet and

Choné (1998) demonstrate that their sweeping method reproduces Mussa and Rosen’s (1978)

ironing in the univariate case (see their Appendix 4).

We next show how Rochet and Choné’s (1998) “sweeping” operator is related to the “ironing”

operator S(x, y). One difference is that S(x, y) maps the first-order condition q(x) −MR(x)

evaluated at the candidate solution q(x) = MR(x) to zero,17 while Rochet and Choné’s (1998)

sweeping operator maps the derivative of the first-order condition evaluated at the candidate

solution to zero. Hence, the sweeping operator, T (x, y), follows from S(x, y) by integrating over

x and differentiating with respect to y:

T (x, y) =

{
(3
2
− 2x)δ(y − 1

4
) + (2x− 1

2
)δ(y − 3

4
) if 1

4
≤ x, y ≤ 3

4

δ(x− y) otherwise

It is readily verified that
∫ 1

0
T (x, y)dy = 1, i.e. T is stochastic, and that

∫ 1

0
yT (x, y)dy =

x, i.e. T preserves the center of mass and implements a mean-preserving spread. Finally,

(MR
′
(x)−MR′(x))·T = 0 since MR and MR differ only on the interval (1

4
, 3
4
) where T vanishes.18

Rochet and Choné’s (1998) sweeping method can be applied to multi-dimensional environ-

ments and, as such, provides an alternative to our majorization approach. However, an important

difference is that Rochet and Choné’s (1998) approach is non-constructive. A candidate solution

16See, in particular, footnote 23 in Rochet and Choné (1998). A recent paper by Kleiner et al. (2020) that
characterizes extreme points for the (uniform) univariate case, also makes this observation.

17Note that S(x, y) is idempotent so MR = S ·MR is equivalent to S · (MR−MR) = 0.
18As a further illustration of the sweeping operator, consider the uniform case F (x) = x. Then F ′ · T =∫ 1

0
T (x, y)dx yields a continuous density, f(y) = 1 for y ≤ 1

4 and y ≥ 3
4 , and two mass points, 1

4δ(y −
1
4 ) and

1
4δ(y −

3
4 ).
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Figure 2: The left panel shows the non-monotonic marginal revenues MR(x) of Example 3 and
the right panel shows its ironed version MR(x).

is proposed and then a sweeping operator that maps the derivative of the first-order condition

evaluated at this candidate solution to zero has to be found. In contrast, the multivariate ma-

jorization technique we propose constructs the optimal solution from the exogenously specified

marginal revenues.

5.3. Characterizing the Ironed Marginal Revenues

The ironed marginal revenues for the continuous case can be obtained from (10) and the char-

acterization in Proposition 4 applies: MR(x) is the non-decreasing function closest to MR(x),

its level sets form an ortho-convex partition P of X,19 MR(x) = E[MR(y) |y ∈ P (x)] where

P (x) = {y |MR(y) = MR(x)} is the partition cell that contains x, and the stochastic operator

in (9) maps MR(x) to MR(x).

Example 3 Suppose types are uniformly distributed on X = [0, 1]2 and that value functions

are v1(x1, x2) = v2(x1, x2) = v(x1 + x2). It is readily verified that the marginal revenues will be

functions of x = x1 + x2. The left panel of Figure 2 shows MR(x) = MR1(x) + MR2(x) when

v(x) = 1
4

+ x2 − 5
3
x3 + x4 − 1

5
x5 and the right panel shows the ironed version MR(x).

There are two flat regions, i.e. x1 + x2 ≤ α and β ≤ x1 + x2 ≤ γ, and two regions where

MR(x) = MR(x), i.e. α ≤ x1 + x2 ≤ β and x1 + x2 ≥ γ.20 If we interpret MR(x) as a measure,

it can be obtained from MR(x) by sweeping all mass in the lower triangle x1 + x2 ≤ α to a

mass-point at 0. Likewise, for the region β ≤ x1 +x2 ≤ γ, the excess mass MR(x)−MR(x) ≥ 0

19If MR(xi,x−i) = MR(x′i,x−i) for some xi < x′i then MR(x,x−i) is constant for all xi ≤ x ≤ x′i since
otherwise MR(x) is not non-decreasing.

20Where α ≈ 0.29, β ≈ 0.87, and γ ≈ 1.51.
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of the lower part of this region is swept to cover the deficit MR(x) −MR(x) ≤ 0 of the upper

part of this region. �

5.4. The Optimal Mechanism

With the ironed marginal revenues MR(x) determined by (10), the optimal mechanism for public

goods follows from Proposition 6. The only change is that the optimal payments become

t∗(x) = vi(x)q∗(x)−
∫ xi

xi

v′i(si,x−i)q
∗(si,x−i)dsi

where q∗(x) = C ′−1(max(0,MR(x))) as before.

Access rights can be incorporated as well for continuous type spaces. To illustrate, sup-

pose there are two buyers with uniformly distributed types on X = [0, 1]2 and value functions

vi(xi, x−i) = xi − 2x−i for i = 1, 2. Then MR(x1, x2) = −2 for all (x1, x2) ∈ X and, with-

out access rights, the optimal quality is zero everywhere (as is the seller’s revenue). In con-

trast, with access rights, q∗(x1, x2) = max(0, |x1 − x2| − 1
2
) and η∗1(x1, x2) = δx1>x2+1/2 and

η∗2(x1, x2) = δx2>x1+1/2. Note that the introduction of access rights benefits the seller as well as

the buyers. Also, the welfare-maximizing mechanism has q∗(x1, x2) = max(0, x1− 2x2, x2− 2x1)

and η∗1(x1, x2) = δx1> 2x2 and η∗2(x1, x2) = δx2> 2x1 showing that all-or-nothing access rights can

be welfare improving.

Finally, the profitability of probabilistic access rights can be illustrated by creating a value

non-monotonicity in the x−i coordinate. Suppose we add 2 to vi(xi, x−i) when 1
3
≤ x−i ≤ 2

3
and

add 20 outside this region. Then the sum of marginal revenues, MR(x1, x2), is non-monotonic.

Without access rights, the sum of the ironed marginal revenues is

MR(x1, x2) = 20 + 9 δ
x1>

2
3

+ 9 δ
x2>

2
3

while, with access rights,

M̃R(x1, x2) = MR(x1, x2) +
46

9
(1− 4 δ

min(x1,x2)>
1
3
) δ

max(x1,x2)<
2
3

In other words, M̃R(x1, x2) drops in the region where both buyers’ types are intermediate.

Incentive compatibility is maintained, however, by setting appropriate access rights, i.e., for

i = 1, 2, η∗i (xi, x−i) = 15
61

when xi ≤ 1
3

and 1
3
≤ x−i ≤ 2

3
, and η∗i (xi, x−i) = 1 otherwise.

6. Conclusion

We characterize the optimal mechanism for a monopolist to sell an excludable, non-rival good

when buyers’ values are interdependent. We show how the interdependency of buyers’ values
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creates multidimensional incentive-compatibility constraints on the monopolist’s problem. These

constraints cannot be addressed using the standard (univariate) techniques of the literature.

Instead, in the spirit of Mussa and Rosen (1978) and Myerson (1981), we define a concept of

multivariate majorization that can be used to jointly “iron” buyers’ preferences. The resulting

preferences are sufficiently well behaved that the incentive constraints no longer strictly bind

allowing the monopolist to effectively ignore them. Notably, our approach is constructive: we

show how to find the needed preferences through simple quadratic optimization problems.

The problem we study is perhaps most easily analyzed in the case of pure public goods, i.e.

when all buyers are guaranteed access regardless of their type. Indeed, this is the assumption

under which we develop our concept of multivariate majorization. We show, however, that our

approach extends directly to the case of excludable goods. In so doing, we demonstrate that

exclusions and random access rights are important ways for the monopolist to raise profits. The

former allows the monopolist to exclude buyers with negative marginal revenue and the latter

allows the monopolist to fine tune incentives, both without manipulating the overall choice of

quality for the market.

Though we focus mainly on buyers with discrete types, we demonstrate that our multivariate

majorization techniques can also be applied to the continuous case. This allows us to compare

our multivariate majorization approach to Rochet and Choné’s (1998) “sweeping” method and

demonstrate with an example how the stochastic operators that implement “ironing” and “sweep-

ing” are related. Importantly, Rochet and Choné’s (1998) approach is not constructive, i.e. a

candidate solution has to be guessed and then a sweeping operator, which maps the derivative

of the first-order condition evaluated at this solution to zero, has to be found. In contrast,

our multivariate majorization approach constructs the optimal solution from the exogenously

specified marginal revenues. An interesting avenue for future research is to examine whether the

approach can be adapted to handle multidimensional types for individual buyers.
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A. Proofs

Proof of Proposition 2. For notational convenience, we prove the proposition for the case of

a uniform distribution over types for all players. We say that x is lexicographically lower than

y, written y ≤L x, if there is a k ∈ N such that yk > xk, then there exists l ∈ N , l < k such

that yl < xl; x is strictly lexicographically lower than y, written y <L x if y ≤L x and x 6= y.

In words, we first sort type profiles by player, then by type.

Suppose g � h. Choose i ∈ N and x−i such that there is x̂i and x̃i with x̂i < x̃i, h(x̂i,x−i) >

g(x̂i,x−i), h(x̃i,x−i) < g(x̃i,x−i) and where (x̃i,x−i) is the lexicographically lowest such profile

and (x̂i,x−i) is the lexicographically highest such type (lexicographically below (x̃i,x−i))). Let

α =
δ

g(x̃i,x−i)− g(x̂i,x−i)

where δ = min
(
g(x̃i,x−i) − h(x̃i,x−i), h(x̂i,x−i) − g(x̂i,x−i)

)
and define the orthogonal T -

transform

T (z,y) =


α if z−i = y−i = x−i and zi = yi = x̂i or zi = yi = x̃i
1− α if z−i = y−i = x−i and zi = x̂i, yi = z̃i or zi = x̃i, yi = x̂i
1 if z = y 6∈ {x̂, x̃}
0 otherwise

Then

(Tg)(z) =


αg(x̂i,x−i) + (1− α)g(x̃i,x−i) if z−i = x−i and zi = x̂i
αg(x̃i,x−i) + (1− α)g(x̂i,x−i) if z−i = x−i and zi = x̃i
g(z) otherwise

=


g(x̂i,x−i) + δ if z−i = x−i and zi = x̂i
g(x̃i,x−i)− δ if z−i = x−i and zi = x̃i
g(z) otherwise

It is clear that Tg ≺ g. It is also true that h ≺ Tg. To see this, suppose instead that there is a

lower set X− ⊂ X such that E
(
(Tg)(z)|z ∈ X−

)
> E

(
h(z)|z ∈ X−

)
. Then (x̂i,x−i) ∈ X− but

(x̂i,x−i) 6∈ X−. By our choice of i, x−i, x̂i and x̃i, we may assume

{x′|x′ <L (x̃−,x−i)} ⊆ X−.

But (Tg)(x̃i,x−i) ≥ h(x̃i,x−i) so that

E
(
Tg(z)|z ∈ X− ∪ {(x̃i,x−i)}

)
> E

(
h(z)|z ∈ X− ∪ {(x̃i,x−i)}

)
and E

(
Tg(z)|z ∈ X− ∪ {(x̃i,x−i)}

)
= E

(
g(z)|z ∈ X− ∪ {(x̃i,x−i)}

)
. Since X− ∪ {(x̃i,x−i)} is a

lower set, this contradicts our assumption that g � h and we conclude that Tg � h.
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Finally, for any two functions φ and ψ on X, let d(φ, ψ) denote the number of type profiles

x ∈ X such that φ(x) 6= ψ(x). Then d(g, Tg) = d(g, h) − 1. Therefore, repeating this step at

most |X| − 1 times will result in h.

Now suppose that h = Sg where S is the product of a sequence of orthogonal T -transforms

T 1, . . . , TK for some finite integer K. Suppose T 1 mixes between type profiles (x̂i,x−i) and

(x̃i,x−i), with probability (α, 1− α) for α ∈ [0, 1] and x̂i < x̃i. Define

g∗(z) ≡ (T 1g)(z) =


αg(x̂i,x−i) + (1− α)g(x̃i,x−i) if z−i = x−i and zi = x̂i
αg(x̃i,x−i) + (1− α)g(x̂i,x−i) if z−i = x−i and zi = x̃i
g(z) otherwise

.

Then

E(g∗(x)|x ∈ X−) =


E(g(x)|x ∈ X−)

+(1− α)
(
g(x̃i,x−i)− g(x̂i,x−i)

)
f(x̂i,x−i) if (x̂i,x−i) ∈ X−, (x̃i,x−i) 6∈ X−

E(g(x)|x ∈ X−) otherwise

≥ E(g(x)|x ∈ X−)

So that g∗ ≺ g. Iterating in this way, we can conclude that h ≺ g. �

Proof of Lemma 1. To implement g � MR in (8) we parameterize g(x) = MR(x) −∑
i∈N ∆iλ

∗
i (x)/f(x) where the λ∗i (x) follow from a simple quadratic optimization program:

λ∗(x) = argmin
λ :X→Rn≥0

E
[
(MR(x)−

∑
i∈N

∆iλi(x)/f(x))2
]

(13)

Its solutions must satisfy, for i ∈ N ,

λ∗i (x)∆ig(x) = 0 (14)

∆ig(x) ≥ 0 (15)

which imply, for i ∈ N , λ∗i (x)∆iφ
′(g(x)) = 0 and ∆iφ

′(g(x)) ≥ 0 for any convex φ. �

Proof of Proposition 3. The constraint g � MR defines a convex polyhedron. Hence, the

quadratic program has a unique minimizer that is non-decreasing by construction. Suppose

∆iMR(x) < 0 for some x ∈ X, i ∈ N then raising λi(x) slightly lowers the objective in

(13), a contradiction. Suppose, in contradiction, there exists a non-decreasing g(x) such that

MR � g � MR. By Proposition 2 there exists a doubly stochastic operator S(x,y) such that

g(x) =
∑

y∈X S(x,y)MR(y). But, convexity of the objective in (8) then implies that g yields a

lower value than MR, which contradicts MR being the unique minimizer of (8). �

Proof of Proposition 4. Suppose, in contradiction, that level sets of MR(x) do not form an

ortho-convex partition, i.e. there exists i ∈ N , x−i ∈ X−i, and xi, x, x
′
i ∈ Xi with xi < x < x′i

such that (xi, x−i) and (x′i, x−i) belong to the same level set but not (x, x−i). This would violate

MR(x) being non-decreasing in each coordinate. Next, suppose, again in contradiction, that
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MR(x) 6= E[MR(y)|y ∈ P (x)] for some level set P (x) with x such that there is no z ≤ x for which

MR(z) 6= E[MR(y)|y ∈ P (z)]. Since MR � MR we must have MR(x) < E[MR(y)|y ∈ P (x)]

and, since E[MR(x)] = E[MR(x)], there must exist x′ such that MR(x′) > E[MR(y)|y ∈ P (x′)]

with x′ such that there is no z ≤ x′ for which MR(z) > E[MR(y)|y ∈ P (z)]. The lower set of

x′ must include x, i.e. x′ > x, since otherwise MR � MR is violated. Lowering MR on P (x′)

by ε/|P (x′)| while raising MR on P (x) by ε/|P (x)| for some small ε > 0 lowers the objective in

(8), contradicting the fact that MR minimizes (8).

For the final statement of the proposition, note that y ∈ P (x) iff x ∈ P (y) so δy∈P (x) =

δx∈P (y). Moreover, if z ∈ P (x) and y ∈ P (x) then z ∈ P (y) so δy∈P (x)/
∑

z∈P (x) f(z) =

δx∈P (y)/
∑

z∈P (y) f(z). Hence,
∑

x∈X S(x,y) =
∑

x∈X δx∈P (y)f(x)/
∑

z∈P (y) f(z) = 1. And∑
y∈X S(x,y)MR(y)f(y) = E[MR(z)|z ∈ P (x)]f(x) = MR(x)f(x). �

Proof of Proposition 5. If a non-decreasing g(x) minimizes ||MR(x)−g(x)|| then it also mini-

mizes 1
2
||MR(x)−g(x)||2. Take this to be the objective to which we add

∑
i∈N,x∈N λi(x)∆ig(x) to

deal with the constraint that g(x) has to be non-decreasing (where λ(x) ≥ 0 and λ(x,x−i) = 0).

This term can be rearranged to yield the first-order condition g(x) = MR(x)−
∑

i∈N ∆iλ
∗
i (x)/f(x)

where

λ∗(x) = argmax
λ :X→Rn≥0

1

2
E
[
MR(x)2 − (MR(x)−

∑
i∈N

∆iλi(x)/f(x))2
]

which yields the same λ∗(x) as (13). Hence, g(x) = MR(x). �

Proof of Proposition 6. From 1, the mechanism (q∗, t∗) satisfies incentive compatibility

constraints as MR(x) is non-decreasing in each coordinate by Proposition 3.

It is clear that weak duality holds for the saddle-point problem. To show that strong duality

holds, we need to show that the value gap under MR(x) and q∗(x) is zero. By Proposition 4,

there exists a partition P such that when MR(x) 6= MR(x) on Pi ∈P, MR(x) is constant on

Pi. Thus q∗(x) is also partition-wise constant given MR(x) 6= MR(x). We calculate the value

gap as follows:

π(MR, q∗)− π(MR, q∗) = E
[
q∗(x)(MR(x)−MR(x))

]
= E

Pi∈P

[
E
[
q∗(x)(MR(x)−MR(x))|x ∈ Pi

]]
= E

Pi∈P

[
q∗(x)E

[
(MR(x)−MR(x))|x ∈ Pi

]]
= E

Pi∈P

[
q∗(x)

[
E[MR(x)|x ∈ Pi]− E[MR(x))|x ∈ Pi]

]]
= 0

The last equation is due to Proposition 4. We thus have

π(q,MR) ≤ π(q,MR) ≤ π(q∗,MR) = π(q∗,MR)

where the first inequality follows because MR � MR and q non-decreasing implies π(q,MR) −
π(q,MR) = E[q(x)(MR(x) −MR(x))] ≤ 0, the second inequality follows from optimality of q∗

for MR, and the final equality follows from the zero value gap. Hence, q∗ is optimal for MR. �
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Proof of Proposition 7. We first construct the partition used in the proposition and prove

it is ortho-convex. First note that for any player, or any dimension, i, while fixing x−i, i’s type

space is partitioned into intervals P such that (i) λi(xi,x−i) = 0 for xi < min{x′i|(x′i,x−i) ∈ P};
(ii) λi(xi,x−i) = 0 for x = max{x′i|(xi,x−i) ∈ P}; and (iii) if |P | > 1 then λi(xi,x−i) > 0 for

min{P} ≤ x < max{P}. Denote this partition by Pi.

The following algorithm constructs the ironed or flattened subset of X containing P ∈ Pi.

Let P 1 = P . By the Kuhn-Tucker conditions (14) and (15), any feasible mechanisms requires

that ηi(xi,x−i)q(xi,x−i) be constant in i for all x ∈ P . Moreover, E(∆iλi(x)|x ∈ P 1) = 0.

Given P k−1, define

P k = P k−1
⋃
j∈N

{
P̂ ∈Pj

∣∣P̂ 6⊆ P k−1, P̂ ∩ P k−1 6= ∅
}
.

The set P k adds to P k−1 all intervals with positive multipliers in all dimensions that intersect

with P k−1 (but are not already contained in P k−1).

The solution to (12) must be such that ηj(·)q(·) is constant on P k. To see this, suppose

ηj(·)q(·) = c is constant on P k−1 and that there is some j ∈ N and P̂ ∈Pj such that P̂ 6⊆ P k−1

and P̂ ∩ P k−1 6= ∅ – i.e. an interval in dimension j that intersects with and is not inside P k−1.

Then ηj(·)q(·) = c on P̂ ∩ P k−1 by assumption. Using conditions (14) and (15) in dimension j,

this extends to the entire set P̂ .

Each iterative set is ortho-convex, after possibly adding some knife-edge type profiles where

the monotonicity constraint just binds: take (xj,x−j) ∈ P k and (x′j,x−j) ∈ P k with x′j > xj.

Since any incentive compatible mechanism requires that ηj(·)qj(·) be non-decreasing in dimension

j, ηj(x
′
j,x−j)q(x

′
j,x−j) ≥ ηj(x̂j,x−j)q(x̂j,x−j) ≥ ηj(xj,x−j)q(xj,x−j) for any x̂j ∈ (xj, x

′
j). But

ηj(x
′
j,x−j)q(x

′
j,x−j) = ηj(xj,x−j)q(xj,x−j) so ηi(x̂j,x−j)q(x̂j,x−j) = ηi(xj,x−j)q(xj,x−j) for

any x̂j ∈ (xj, x
′
j). If the interval [xj, x

′
j] × {x−j} 6⊆ P k, add it to the set before moving to the

next step.

The algorithm ends when the set
{
P̂ ∈Pj

∣∣P̂ 6⊆ P k, P̂ ∩P k 6= ∅
}

is empty for all players (i.e.

when no intervals not inside the iterative set intersect with the iterative set). Call the resulting

set P . Then P is ortho-covex and E(
∑

j∈N ∆jλj(x)|x ∈ P ) = 0. To see the latter, suppose k

was the final step in the algorithm and that
{
P̂ ∈ Pl

∣∣P̂ 6⊆ P k, P̂ ∩ P k 6= ∅
}

is empty for all

players l ∈ N but there exists j ∈ N such that E(∆jλj(x)|x ∈ P k) 6= 0. Then, there must

be x ∈ P k ∩ P̂ for some P̂ ∈ Pj by definition of Pj. But, since E(∆jλj(x)|x ∈ P ′) = 0 for

any P ′ ∈ Pj, it must be that P̂ 6⊆ P k. Therefore P̂ ∩ P 6= ∅ and P̂ 6⊆ P , contradicting the

assumption that
{
P̂ ∈Pj

∣∣P̂ 6⊆ P k−1, P̂ ∩ P k−1 6= ∅
}

is empty.

Repeating this algorithm for all P ∈Pi and all i ∈ N results in a partition of the type space;

denote this partition by P. Define P (x) = {y ∈ P |x ∈ P, P ∈P}.
Next, we show the saddle-point problem for restricted rights has the strong duality property

under the choice of q∗(x) and η∗i (x). From above, we have that for any cell Pi ∈ Pi, Pi is

contained in one cell of P, and, for fixed x−i, q
∗η∗i is constant on Pi. Because on each ironed

interval Pi, E[∆iλ
∗
i (xi,x−i)|(xi,x−i) ∈ Pi] = 0, we have

E[M̃Ri(xi,x−i)|(xi,x−i) ∈ Pi] = E[MRi(xi,x−i)|(xi,x−i) ∈ Pi].
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We calculate the value gap between the saddle-point problem and the primal problem under

(q∗,η∗,λ∗):

π(M̃R, q∗,η∗)− π(M̃R, q∗,η∗)

=E

[
q∗(x)

∑
i

M̃Ri(x)η∗i (x)

]
− E

[
q∗(x)

∑
i

MRi(x)η∗i (x)

]

=E

[∑
i

q∗(x)η∗i (x)(M̃Ri(x)−MRi(x))

]
=
∑
i

E
[
q∗(x)η∗i (x)(M̃Ri(x)−MRi(x))

]
=
∑
i

E
[
E[q∗(xi,x−i)η

∗
i (xi,x−i)(M̃Ri(xi,x−i)−MRi(xi,x−i))|(xi,x−i) ∈ Pi]

]
=
∑
i

E
[
q∗(xi,x−i)η

∗
i (xi,x−i)E[M̃Ri(xi,x−i)−MRi(xi,x−i)|(xi,x−i) ∈ Pi]

]
= 0

We thus have

π(MR, q,η) ≤ π(M̃R, q,η) ≤ π(M̃R, q∗,η∗) = π(MRq∗,η∗)

where the first inequality follows because, for every i ∈ N , M̃Ri �i MRi and q(·)ηi(·) is non-

decreasing implies E[q(x)ηi(x)(MRi(x)− M̃Ri(x))] ≤ 0, the second inequality follows from opti-

mality of (q∗,η∗) for M̃R, and the final equality follows from the zero value gap. Hence, (q∗,η∗)

is optimal for MR. Therefore, strong duality holds for the saddle-point problem with restricted

access rights, (q∗,η∗,λ∗) is a saddle-point for the Lagrangian, and (q∗,η∗) solves the primal

problem. �

Lemma 2 If there exists two solutions, M̃R and M̃R
′
, to (12) then the associated optimal

mechanisms (q∗,η∗, t∗) and (q̂∗, η̂∗, t̂∗) are identical.

Proof of Lemma 2. Since both M̃R and M̃R
′

are assumed to achieve the maximum in

problem (12) and since
∑

i∈N max{0, gi(x)}2 is strictly convex over the positive range of gi, we

can assume that M̃Ri(x) ≤ 0 and M̃R
′
i(x) ≤ 0 whenever M̃Ri(x) 6= M̃R

′
i(x). Otherwise, for the

convex combination M̃R
′′

= 1
2
(M̃R+ M̃R

′
),

E
[(∑

i∈N

max(0, M̃Ri(·))
)2]

> E
[(∑

i∈N

max(0, M̃R
′′
i (·))

)2]

and M̃R
′′
i �MRi. Moreover, if M̃Ri(x) < 0 and M̃R

′
i(x) < 0 whenever M̃Ri(x) 6= M̃R

′
i(x), then

ηi(x) = η̂i(x) = 0.

Suppose then that there exists (xi,x−i) ∈ X such that M̃R
′
i(xi,x−i) < M̃Ri(xi,x−i) ≤ 0 and

without loss of generality suppose it is the largest type with M̃R
′
i(xi,x−i) 6= M̃Ri(xi,x−i). Then
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η̂∗i (x) = 0 and q̂∗(x′i,x−i)η̂
∗
i (x
′
i,x−i) = 0 for any x′i < xi. But this implies that M̃R

′
i(xi,x−i) ≤ 0

for all x′i < xi (since otherwise Proposition 7 would require that η̂∗i (x
′
i,x−i) > 0). Similarly, if

M̃Ri(xi,x−i) < 0 then q∗(x′i,x−i)η
∗
i (x
′
i,x−i) and we are done.

Suppose instead that M̃Ri(xi,x−i) = 0. There exists x′i such that M̃R(x′i,x−i) < M̃R
′
i(x
′
i,x−i) ≤

0 since M̃Ri and M̃R
′
i must have the same expectation below xi. Since xi is the largest type

for which the two solutions differ, λi(xi,x−i) = λ̂i(xi,x−i). Further, since M̃R
′
i(xi,x−i) <

M̃Ri(xi,x−i), λi(x
−
i ,x−i) > λ̂i(x

−
i ,x−i) ≥ 0; that is, the monotonicity constraints binds between

for x−i and xi. Furthermore, either λi((x
−
i )−,x−i) > λ̂i((x

−
i )−,x−i) ≥ 0 or M̃Ri(x

−
i ,x−i) <

M̃R
′
i(x
−
i ,x−i) ≤ 0. In words, either the M̃Ri is negative for the type just below xi or the mono-

tonicity constraints binds between for (x−i )−, x−i and xi. Iterating in this way, we can conclude

that λi(x̃i,x−i) > 0 for all x̃i ∈ [x′i, x
−
i ] which implies that η∗i (x̃i,x−i)q

∗(x̃i,x−i) is constant over

this interval. Since M̃Ri(x
−
i ,x−i) < 0, Proposition 7 requires η∗i (x̃i,x−i)q

∗(x̃i,x−i) = 0. �
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